报告时间:2018年5月10日上午09:30
报告题目:Architectured Metamaterials: from Tunable Thermal Expansion to
Microvascular Tissue Scaffolding
报 告 人:方绚莱教授
报告地点:水声楼15楼报告厅(第15层)
报告人简介
方绚莱教授现任美国麻省理工学院机械工程系终身教授,麻省理工学院纳米光电及3D纳米生产技术实验室创始人、主任,魔方材料(先进微纳3D打印公司)联合创始人。方绚莱教授于南京大学获得学士和硕士学位,加州大学洛杉矶分校获得博士学位。随后在伊利诺大学厄巴纳-香槟分校任助理教授,于2011年赴麻省理工学院机械工程系从事微纳技术相关的教学研究。方绚莱教授在国际知名刊物上发表超过100篇论文,获得11项专利,被引用次数超过11000次,包括Science 3篇,Nature Materials 2篇; Nature Communications 4篇。授担任五十余国际科学刊物的审稿人,包括《科学》、《自然-材料学》、《自然-纳米技术》等。方教授曾经110多次在国际会议和研究机构做特邀报告。主要研究领域为微纳先进制造和微纳光子学,包括显微立体光刻,显示材料的纳米压印等。方教授获得诸多的荣誉和奖项,包括:2006年美国机械工程师协会Pi Tau-Sigma金奖,2007年麻省理工学院年度全球35名35岁以下顶级发明人奖,2011年他作为第一个中国人被授予国际光学委员会Ernest Abbe奖章,2013年当选为国际纳米制造协会Fellow。
报告摘要
Three-dimensional lightweight material building blocks, through the combination of molecular design of material behavior and microscale geometric patterning, show promise to revolutionize the ability to dissipate energy and manipulate wave propagation. Such materials are desirable for a broad array of applications such as structural components, catalysts supports and energy efficient materials.
In this seminar, I will present our development of three dimensional micro/nanofabrication technique, projection microstereolithography (PuSL), to enable design and exploration of digitally coded multifunctional and multimaterial lightweight metastructures at unprecedented dimensions. The ultra-high resolution and multi-material capabilities of the 3D printing system and the modeling tools developed can be used to design and fabricate architected materials for combined functions, including energy absorption, actuation/morphing, and micro-scale bioreactors for tissue engineering. These structures show promise on focusing and rerouting acoustic waves through broadband and highly transparent metamaterials. I will also discuss the development of engineered, three dimensional arrays of copolymer fibers that serve as mimetics of neuronal axons, using a combination of materials engineering and high resolution 3D microfabrication, which enable study of OPC engagement and subsequent myelination in vitro.